ISTF/5 - SP/04 Agenda Item 4b 17/02/15

GIMA (GBAS Iono Monitoring Assessment)

LATO – 15th and 16th October 2014

The European Organisation for the Safety of Air Navigation

- I. Introduction / Project organisation
- II. Data selection
- III. Data processing
- IV. Step 1 (RINEX processing)
- V. Step 2 (Automatic gradient screening and selection)

VI. Validation

VII.Step 4 (Gradient validation) - First Results

I. Introduction / Project organisation FUROCONT **GIMA project** IONO project (SESAR 15.3.4) (SESAR 15.3.7) **Consortium Organisation EGIS** Avia **Prime Contractor** DSNA CNES (Eqis Avia (Egis Avia Sub-contractor Sub-contractor) EUROCONTROL RINEX ENAC CLS Development of a European (Egis Avia (Egis Avia EUROCONTROL Sub-contractor) Sub-contractor) ionosphere threat model M_{3S} (Egis Avia Sub-contractor Ionosphere monitoring campaign 1. **LTIAM** lonosphere impact modelling 2. **Evaluation of mitigations** 3. Scintillation data **ESA MONITOR project** esa

II. Data Selection: IONO stations

Data are retrieved from existing networks (~240 stations): EUREF, EDCN, EGNOS, Fiule, GEODAF, GNET, GRAFCAN, GREF, IGS, RGP

II. Data Selection: GIMA station clusters

II. Data Selection: additional GIMA clusters

GBAS implementation map (flyGLS.net) Addit

Additional clusters from mid-September 2014

Additional clusters from Sweden: 87 stations

III. Data Processing: hardware

- Network Attached Storage dedicated to RINEX archive:
 - > Data received: ~150 Gb every 3 month from Egis Avia consortium
 - Capacity: total capacity of 3 Tb => at least, 4 years of data can be stored
 - > Integrity: data are stored on a RAID 1 system (2 disks are mirrored)
 - Possibility of future storage capacity extension

Computer dedicated to LTIAM processing

- HP Z420 Workstation
- RAM: 64 GB
- Windows 7 Professional
- MATLAB R2013b + Parallel Computing Toolbox

III. Data Processing: GIMA based on LTIAM

- > LTIAM (Long Term Ionospheric Automated Monitoring):
 - Initially developed by Stanford and provided to EUROCONTROL by the US Federal Aviation Administration
- GIMA = LTIAM + ad-hoc modifications
 - > 70 modifications
 - Development of a Human Machine Interface
 - New cycle slip (CS) correction algorithm
 - Robustness improvement
 - Parallel computing (Matlab parallel computing toolbox)
 - Local RINEX folder
 - Process all data independently from Kp or Dst

~	CIMA	oton 2
	GINA	step z
-	vers	ion 2.1
Processing (parameters	
Sampli	ng rate: 30 se	conds
Arc se	parator. 3600 se	conds
Screening fil	ters	
Iono Gradient	Threshold: 50	mm/km
Excessive-	bias check	
	boundary: 15	mm/km
Processing	options	
Step 2 com	nputation 🛛 🕅 E	xport plots
Concatenat	e output files to fol	der:
		Browse

III. Data processing: Correlation Kp, Dst, TEC

FUROCONTRO

Figure from "GBAS lonosphere Study », Skyguide, presented at the CNS Expert Group, April 2014

Example: 2013 / day 72, Canary islands, TIAS-YAIZ PRN 31

- Raw data
- Cycle slip detection and correction
- Smoothing
- Leveling
- IFB estimation
- "True" data
- Combined and weighted gradient curves

IV. Step 1: cycle slip correction algorithm

- Cycle slips detected by a statistical analysis of the differential iono delay:
 - Comparison against a threshold based on the data standard deviation
 - Polynomial fitting is used to obtain smooth corrections
 - Multiple consecutive data jumps are not corrected in order to not eliminate possible gradients
- Three consecutive iterations with different thresholds

 Differences between two consecutive lphi delay samples: cycle slips when red lines (std thresholds) are exceeded.

- Blue curve: Iphi delay not corrected;
- Red curve: Iphi delay corrected.

- The 7 current clusters (Canary islands, Toulouse, Madrid, Corsica, Friuli, Hamburg, Prague) have been processed
- From 2012 day 282 to 2014 day 179
- Computation time : ~ 81 hours with parallel computing toolbox (72 stations) *
- Output file size : ~30 GB per processed year (7 clusters)

* Estimated computation time. Continuous processing not possible due to debugging process and adaptation of the tool to the parallel processing toolbox.

- > A gradient is identified as a potential threat if :
 - The phase gradient and combined weighted gradients exceed 50 mm/km;
 - Both phase and CMC data are available;
- The combined weighted gradient is calculated to reduce the number of false threat detections due to uncorrelated phase and CMC data:

$$S_{comb} = \sqrt{\left(S_{phi}\right)^{2a} \cdot \left(S_{CMC}\right)^{2(1-a)}}; \qquad a = \frac{ratio}{1+ratio^2}; \qquad ratio = max\left(\frac{S_{phi}}{S_{CMC}}, \frac{S_{CMC}}{S_{phi}}\right);$$

> Outputs:

- List of potential iono gradient threats (date, cluster, station pair, PRN, maximum gradient, elevation angle, instant of the maximum gradient)
- Gradient, iono delay and elevation angle figures of the selected gradients
- Status: the 7 current clusters (Canary islands, Toulouse, Madrid, Corsica, Friuli, Hamburg, Prague) have been processed from 2012 day 282 to 2014 day 179

- The new cycle slip correction implemented decreased significantly the number of false gradient detected
- However, this statistical approach may lead to over-correction that may mask real gradients.
- In order to mitigate this risk, GIMA version has been validated against the LTIAM version provided by the FAA on the Nov 20th, 2003 event
- When LTIAM measured a gradient of 384 mm/Km, gradient estimated with GIMA is 380 mm/km

EUROCONTROL

VII. Step 2 (Automatic gradient screening) First results – 1/3

- High number of potential ionospheric gradients
- Most of the candidates are in the Canary islands and Toulouse clusters

	Nr. of potential iono gradients (not validated)			
Cluster	2012 (days 282-366)	2013 (days 1 - 365)	2014 (days 1-179)	
All	1548	6809	14904	
Canary Islands	712	5488	6233	
Toulouse	777	1312	8502	
Madrid	11	9	30	
Corsica	48	0	139	
Friuli	0	0	0	
Hamburg	0	0	0	
Prague	0	0	0	

VII. Step 2 (Automatic gradient screening) First results – 2/3

> Identification and exclusion of unreliable station (tlia within Toulouse cluster)

FUROCONTRO

VII. Step 2 (Automatic gradient screening) First results – 3/3

> Potential ionospheric gradients when the station is removed:

FUROCON

	Nr. of potential iono gradients (not validated)			
Cluster	2012 (days 282-366)	2013 (days 1 - 365)	2014 (days 1-179)	
All	777	5515	6516	
Canary Islands	712	5488	6233	
Toulouse	6	18	114	
Madrid	11	9	30	
Corsica	48	0	139	
Friuli	0	0	0	
Hamburg	0	0	0	
Prague	0	0	0	

VII. Step 2 (Automatic gradient screening) First results – 3/3

> Number of potential candidates per day and time for the Canary Islands - 2013:

EUROCONT

 \Rightarrow Same characteristic as ionosphere scintillation

VII. Step 4 (gradient validation) first results

- All clusters (except Canary Islands):
 - Year 2013: no gradient observed
 - Year 2012 & Year 2014: validation is on-going

Validation strategies for the Canary Islands:

- Additionnal filters may be developped
- Proceed by elevation groups:
 - > 60°
 - Between 45° and 60°
 - Between 30° and 45°
 - ...
- Proceed with different gradient threshold values:
 - > 100 mm/km
 - > 50 mm/km

 Elaborate statistical approaches from elevation groups and gradient thresholds values

VII. Step 4 (gradient validation) first results

> 2013 / day 53, Canary islands cluster, Gradient ~105 mm/km

Pair: IZAN – SNMG, PRN 25

VII. Step 4 (gradient validation) first results

- > 2013 / day 290, Canary islands cluster, Gradient ~300 mm/km
- > Pair: AGUI-ALDE, PRN 9

EUROCONTROL

- The 7 clusters defined within GIMA project as well as Swepos clusters are consistent with the current European GBAS implementation plan
- Modifications implemented improved significantly the LTIAM robustness and the new cycle slip corrections decreased the number of false gradients detected
- Data from year 2012 day 282 to year 2014 day 179 have been processed
- > There is a high number of potential gradients in Canary Islands
- Strategies for the manual validation:
 - Every gradient above 100 mm/Km will be manually validated
 - For gradients below 100 mm/Km, a statistical approach may be used
- Next steps:
 - Data from mid-2014 will be processed when available
 - Continuation of the manual gradients validation
 - Step 3: Gradient speed computation
 - Cross-check activities with Skyguide and NMA

Questions ? Please contact:

Emilien ROBERT

Space Weather & Navigation Applications Navigation and CNS research Unit

Tel: +32 2 729 47 14 Fax: +32 2 729 90 86 E-Mail: emilien.robert@eurocontrol.int